

Trading Performance and Responsiveness for Energy on Android Devices

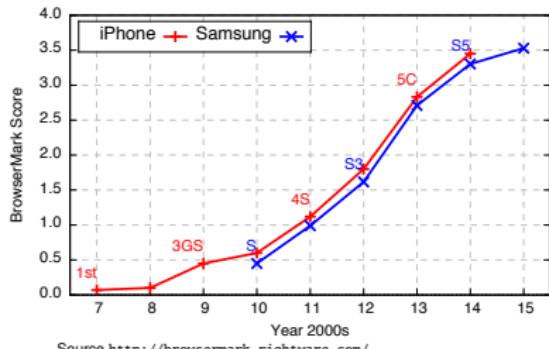
Technical Report

Ahmed Hussein

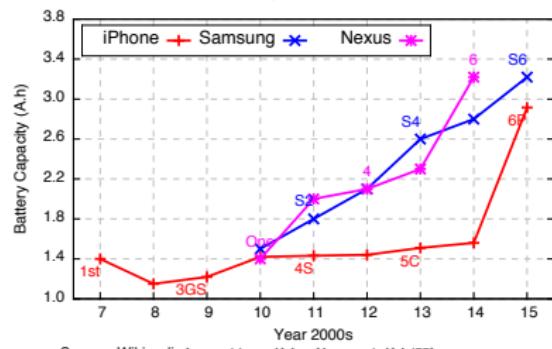
Advised by Antony L. Hosking & Mathias Payer

Department of Computer Science
Purdue University

May 2015


Outline

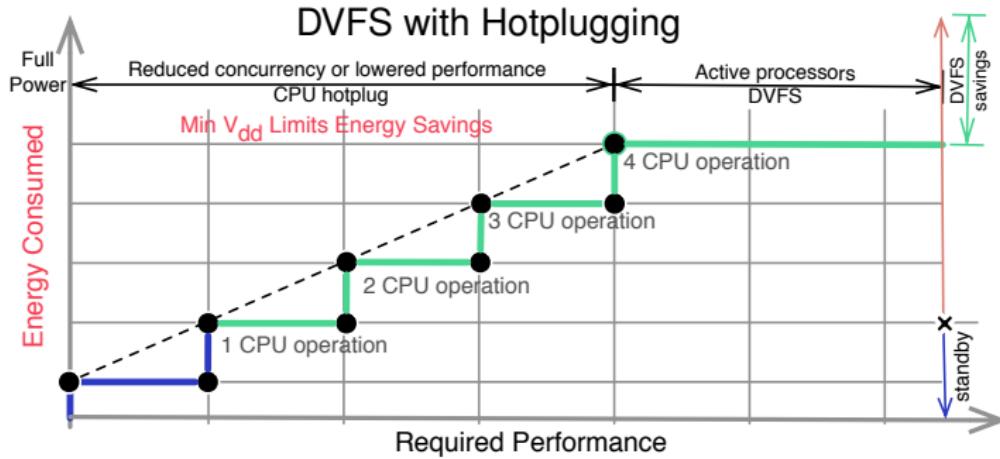
- ① Motivation
- ② Research Description
 - Thesis Statement
 - Milestones
- ③ Coordination between GC & Power
 - GC Impact on Device
 - Reducing Cycles Per Instruction
- ④ Conclusions


Mobile Devices

Performance & Battery Lifetime

CPU Performance Increase

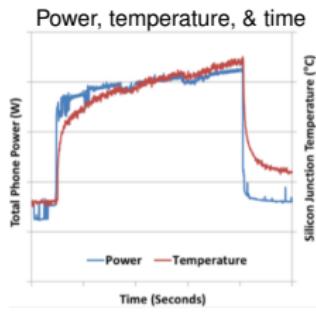
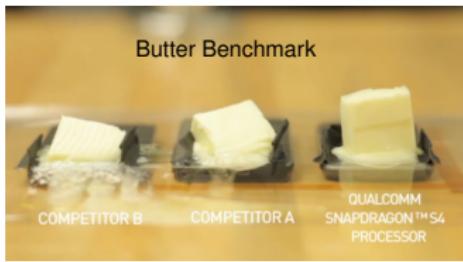
Battery Curve

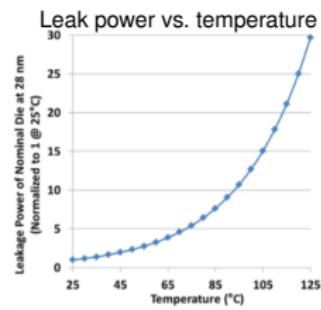

Buying a phone based on a CPU benchmark performance is like buying a car based on what kind of tyres it has.

Tim McDonough

[Review14]

Performance & Power Constraints



DVFS + Hotplugging


Power & Operational Constraints

Temperature

- +ve feedback loop between power and temperature.
- Leakage power increases exponentially with temperature.
- Thermal limits are constant (Skin 40–45 °C).
- No Heat Sinks.
- Power management needs to be made temperature-aware.

© 2013 Broadcom

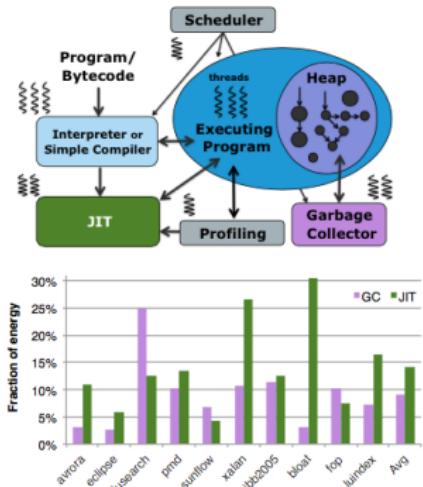
© 2013 Broadcom

Statement

Mobile devices that rely on a managed run-time system pay a significant energy overhead for GC. Thus, tuning the GC implementation ameliorates the total device energy consumption with a minimal impact on throughput and responsiveness.

Tangible Conclusions

- Varying GC strategy can reduce on-chip energy by 20-30%
- GC cost function is related to DVFS
- Integration between GC and power mechanisms is effective

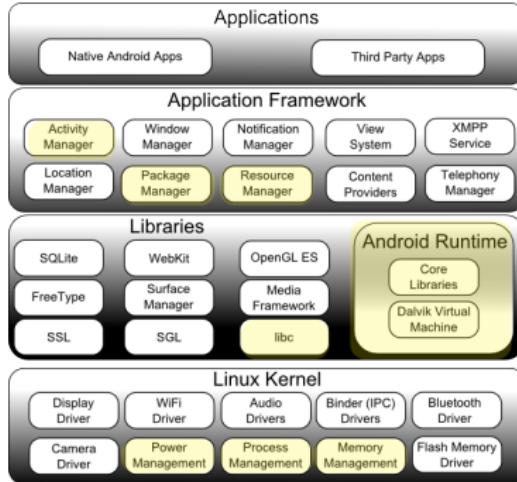

Research Roadmap

- ① Challenges
- ② Methodology to evaluate VM services
- ③ Significance of the GC
- ④ Impact of GC implementation on a device

Software Evaluation

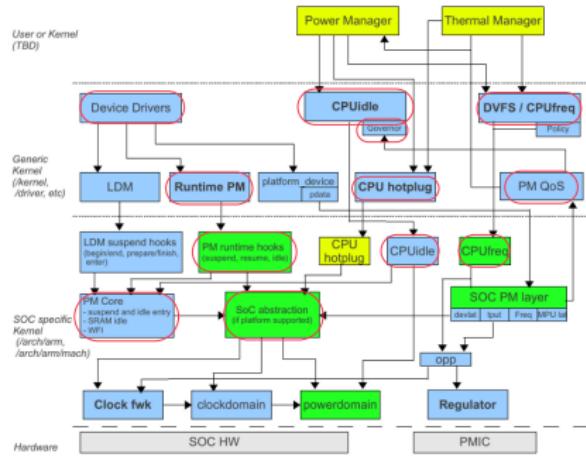
We Have Been There Before!

- Refined methodology
 - ▶ Standard benchmarking.
 - ▶ Powerful profiling infrastructures.
- Evaluation scope
 - ▶ Tradeoffs are less understood.
 - ▶ Research gap between different layers [Kambadur&Kim(2014)].



[Cao et al.(2012)]

System Complexity


SoC Managed by Stacked Software Layers

Android Architecture

Credit: http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture

Power Management

Credit: http://elinux.org/images/a/a1/Elc2011_kucheria.pdf

Benchmarking

Challenges

- Young platform: benchmarking has yet to emerge
- Adaptive behavior, different functionality
- Synthetic, and measures a single feature
- Blackboxes rely on I/O libraries, irrelevant to VM control

Benchmarking

Porting Java Applications

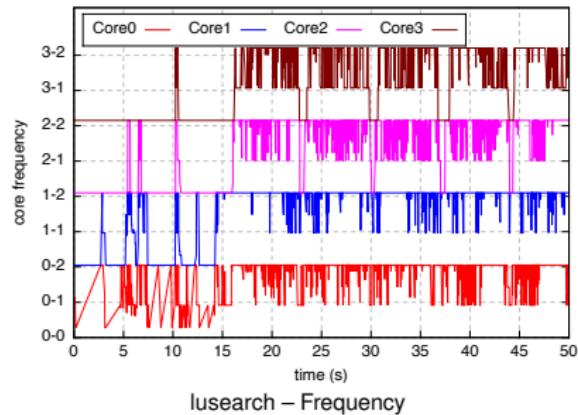
- Java ports:
 - ▶ DaCapo: 4 applications; xalan, lusearch, pmd, and luindex.
 - ▶ SPECjvm98: all 8 applications.
 - ▶ Small workload.
- Advantage:
 - ▶ Enables validation.
 - ▶ Enables correlation between VM and device performance.

Power Measurement

Approach

- Common alternatives:
 - ▶ Analytical models are restricted.
 - ▶ Power rails are not accessible.
- On-Chip Measurements:
 - ▶ Account for static & dynamic powers.
 - ▶ Isolate environment noise.
 - ▶ CPU is significant $\approx 20 - 40\%$

[Carroll&Heiser(2010)].



APQ8074 System-On-Module (SOM)
modifications to measure power for the
quad-Krait application processors

VM Profiling

Performance Counters & Memory Behavior

- Performance counters:
 - ▶ Memory: L1 access and miss.
 - ▶ CPU Cycles: Amount of work.
 - ▶ Instructions.
- Scheduling statistics: switching, migrations, delays, *etc..*
- **systrace**: frequency, idle, workqueues [Android-Systrace].

VM Profiling

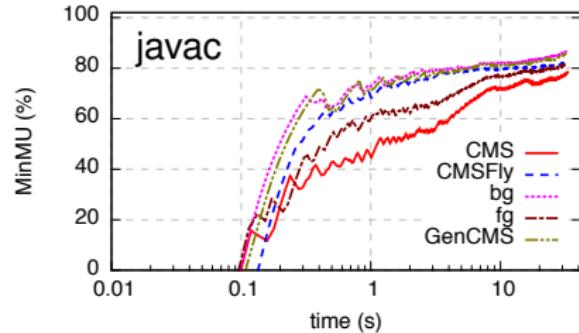
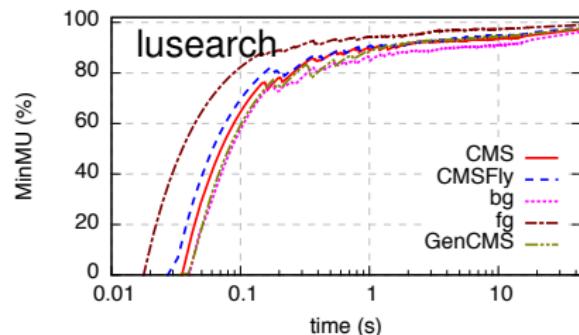
Responsiveness

- Mobiles are not real-time systems [RTDroid].
- Humans perceive pauses greater than 50ms [Efron(1973)].
- WCET is not adequate:
 - ▶ End-to-end execution.
 - ▶ Relation with power is less understood [Wilhelm et al.(2008)].
- Distribution of pauses: *min. mutator utilization* (MMU).
 - ▶ Three groups of pauses: (i) Safepoints, (ii) foreground GC, and (iii) waiting for GC.
 - ▶ MMU for a window of length w is the minimum $\frac{w - \text{pauses}}{w}$ (for all mutators) over all time slices of length w .

GC Cost Function

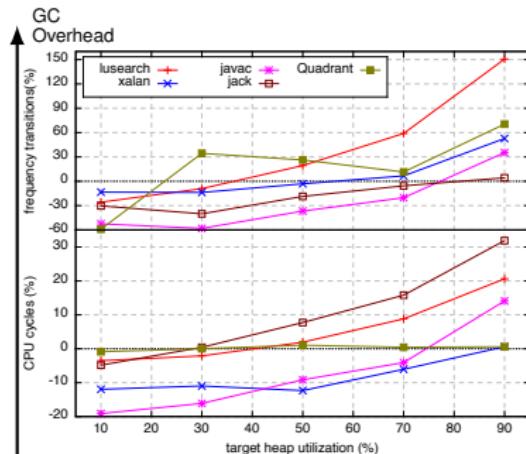
SYSTOR'15

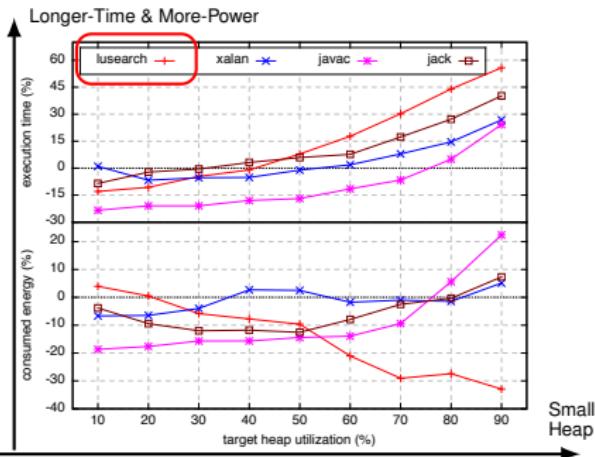
- ① Study the design choices by comparison:
 - ▶ Android Dalvik has *concurrent mark-sweep*
 - ▶ Extend Dalvik's GC with *Generational & On-Fly*.
- ② Analyze the degree of concurrency:
 - ▶ Background GC: mutators yield to GC daemon.
 - ▶ Foreground GC: disables GC daemon.
 - ▶ Set thread priorities.
- ③ Revisit GC configurations:
 - ▶ Change heap growth policies.



GC Implementations

Impact on Responsiveness and Power

- Background GC lifts MMU for large heaps.
- Foreground has better MMU because of priorities.
- Generational lifts the background performance.


- Background GC consumes more energy.
- Foreground saves energy.


GC Parameters Tuning

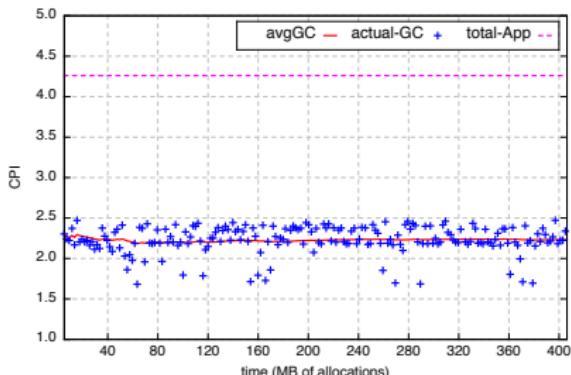
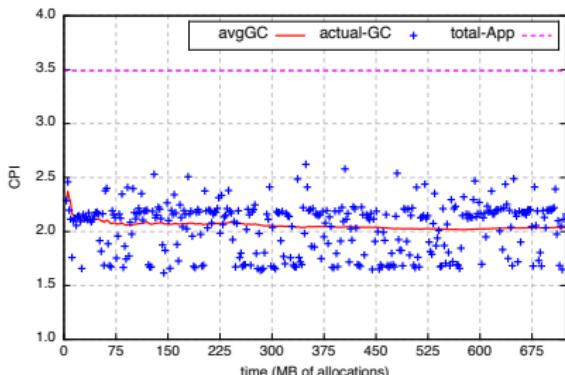
Heap Size

- App workload increases with tighter heaps.
- Smaller heaps imply more frequency transitions.

Effect of targetutil on CPU cycles (bottom) & frequency transitions (top) normalized to default CMS

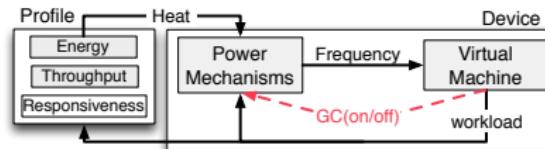
Effect of targetutil on energy (bottom) & throughput (top) normalized to default CMS

GC Impact on DVFS, ISMM'15

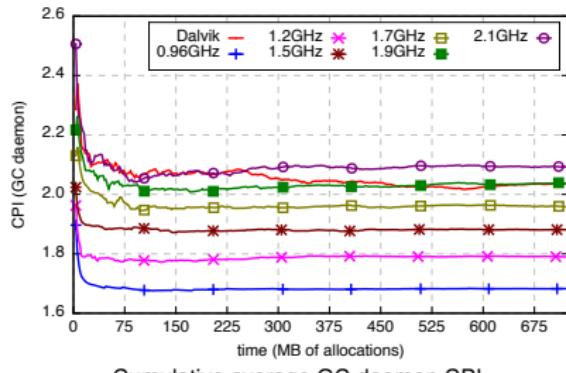


Issues with DVFS

- Increased throughput \neq better energy consumption.
- GC events have a significant impact on DVFS decisions.
- DVFS adopts “*race-to-idle*”.
- DVFS has latency (too late).
- DVFS cannot detect impulses.

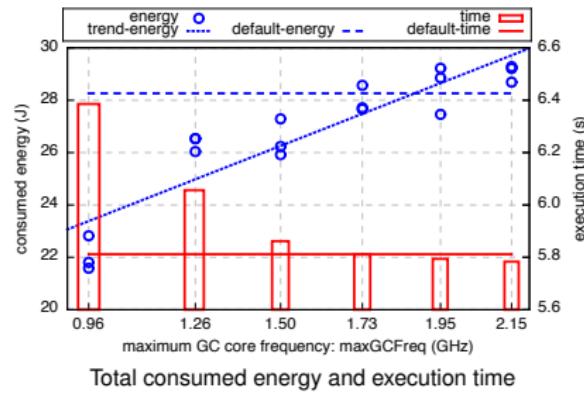
Exploring Phase Behavior


CPI

- Program's execution changes over time in phases.
- GC has a lower CPI compared to the average mutator workload.


Integrating GC with Power Throttling

- Reduce wasted cycles during *concurrent GC*:
 - ▶ Pin GC daemon to core-0.
 - ▶ Cap the maximum frequency of core-0.
- Explore the tradeoff using different frequencies:
 - ▶ Vary the maximum core speed.
 - ▶ Study the throughput and responsiveness tradeoffs.



Block diagram of the modified architecture

Reduce the CPI Through DVFS

Cumulative average GC daemon CPI

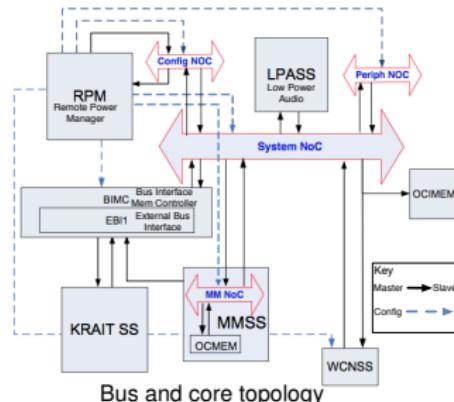
Total consumed energy and execution time

- The lower the capping frequency, the lower the CPI
- 30% energy reduction at 0.96GHz capping frequency
- 20% time overhead at worst-case

Introducing Android RunTime (ART)

New Android VM

- Ahead-of-time Compiler for Android 4.4
- ART implements several of our GC improvements:
 - ▶ One major pause time instead of two
 - ▶ *Sticky* collector to deal with short lived objects
 - ▶ A separate heap for large objects
 - ▶ Parallel processing during the pauses
- Exploring ART's behavior is necessary:
 - ▶ Relevance to real devices
 - ▶ New VM produces new profiles


Conclusions

What to take?

- GC is significant for energy, responsiveness, and throughput.
- Concurrent GC has different workloads compared to App mutators.
- GC benefits from direct integrations with Power Managers.
- GC-aware governors outperform GC parameter tunings.
- It is necessary to evaluate Mobile systems through non-adjacent layers.
- Mobile platform needs standard benchmarkings and methodology.

Direct Integration with Power Bus Speed & Memory DVFS

- Power Savings in DRAM:
 - ▶ Self Refresh
 - ▶ Sleep States
- Memory performance at reduced CPUfreq depends on architecture [Schone et al.(2012)].
- Memory Bandwidth varies with benchmark phases.
- Portion of cache-residency.
- RPM chooses a performance level that satisfies all outstanding requests for a bus.

- A. Hussein, A. L. Hosking, M. Payer, and C. A. Vick.
Don't race the memory bus: Taming the gc leadfoot.
To appear in proceedings of the International Symposium on Memory Management, Portland, OR, June 2015.
- A. Hussein, M. Payer, A. L. Hosking, and C. A. Vick.
Impact of GC design on power and performance for Android.
To appear in proceedings of the International Systems and Storage Conference, Haifa, Israel, May 2015.
- A. Hussein.
On tracing the memory behavior of Dalvik applications.
Master's thesis, Purdue University, 2013.

A. Carroll and G. Heiser.

An analysis of power consumption in a smartphone.

In *Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference*, pages 21–21, Berkeley, CA, USA, 2010. USENIX Association.

URL <http://dl.acm.org/citation.cfm?id=1855840.1855861>.

T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley.

The yin and yang of power and performance for asymmetric hardware and managed software.

In *International Symposium on Computer Architecture*, pages 225–236, Portland, Oregon, June 2012. doi: 10.1109/ISCA.2012.6237020.

M. Kambadur and M. A. Kim.

An experimental survey of energy management across the stack.

In *ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications*, pages 329–344, Portland, Oregon, Oct. 2014.

doi: 10.1145/2660193.2660196.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,

R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.

The worst-case execution-time problem — overview of methods and survey of tools.

ACM Transactions on Embedded Computing Systems, 7(3):36:1–36:53, May 2008.

doi: 10.1145/1347375.1347389.

R. Efron.

Conservation of temporal information by perceptual systems.

Perception & Psychophysics, 14(3):518–530, Oct. 1973.

doi: 10.3758/BF03211193.

R. Schone, D. Hackenberg and D. Molka.

Memory Performance at Reduced CPU Clock Speeds: An Analysis of Current x86_64 Processors.

Presented as part of the 2012 Workshop on Power-Aware Computing and Systems, May 2012.

URL <https://www.usenix.org/conference/hotpower12/workshop-program/presentation/Schone>.

Qualcomm, Inc.

Snapdragon S4 Thermal Comparison and Butter Benchmark.

2012

URL <https://youtu.be/zPGVGsQ7LrM>.

Google.

Systrace.

2015

URL <https://developer.android.com/tools/help/systrace.html>.

TrustedReviews.

Qualcomm: Don't buy a smartphone because of a CPU benchmark

Tim McDonough is the Head of marketing and the transformational technology marketer at Qualcomm, Inc.

Jan 2014.

URL <http://www.trustedreviews.com/news/qualcomm-don-t-buy-a-smartphone-because-of-its-cpu>.

RTDroid.

Real-time Android variant powered by Fiji VM

2015

URL <http://rtdroid.cse.buffalo.edu/>.